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A simple, direct method is presented for the calculation of mobility functions for the 
translational and rotational velocities and stresslets of two equal-sized spheres in 
unbounded low-Reynolds-number flow when the ambient velocity field is a 
superposition of a uniform stream, a vorticity and a rate-of-strain field. Our 
numerical procedure furnishes accurate values for touching spheres and coefficients 
for the near-field asymptotic expansions. The singular behaviour of the mobility 
functions is clarified. These results have been used to determine accurately the 
coefficient of the O(c2) term in the expression for the bulk stress in a suspension of 
spheres ( 6 . 9 5 ~ ~  instead of 7.62). 

1. Introduction 
When two rigid spheres are set in motion in a Newtonian fluid in situations where 

the effect of inertial forces is negligible there exists a set of linear relations between 
the rigid-body motion of the spheres in the ambient field on one hand, and the 
moments (force, torque, stresslet) exerted on the spheres on the other. Such 
information is essential in the theoretical investigations of the behaviour of 
suspension of small particles, such as the trajectory analysis for colloid stability (van 
de Ven & Mason 1976 ; Zeichner & Schowalter 1977) and the calculation of bulk stress 
(Batchelor & Green 1972b; Batchelor 1977; Russel & Gast 1986). Following the 
general framework of Brenner & O’Neill (1972) we define the resistance problem as 
that in which the moments on the spheres are to be determined for the specified 
translational and rotational velocities of the spheres in a linear ambient field. The 
mobility problem is defined as that in which the forces and torques are prescribed in 
the ambient field and the particle motion and the stresslet are the unknowns. 
Historically, the solution of the mobility problem has lagged behind that of the 
resistance problem because the mobility problem is usually solved by inversion of the 
linear relations from the resistance problem. 

Several methods have been developed for solving the Stokes equation for two 
spheres. Lin, Lee & Sather (1970) have used the bispherical coordinates to calculate 
the motion in a shear field. In  their work the singular behaviour of some of the 
mobility functions at small separations raises the question of convergence in the 
evaluation of infinite series and Batchelor & Green (1972a) have observed the 
inconsistency with their asymptotic expressions. The case of two touching spheres in 
a shear field has been studied by Wakiya (1971, 1972) and Nir & Acrivos (1973) using 
the tangent-sphere coordinates. A more detailed analysis in a general linear field was 
done by Batchelor & Green (1972a). They used the method of reflections (Happel & 
Brenner 1983) to obtain the far-field analytic forms of the mobility functions valid 
when the separations are greater than sphere radius, and used the lubrication 
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analysis (O’Neill & Majumdar 1970) for the near-field analytic forms. However, the 
information on the stresslet was limited to the far-field region and the values a t  
touching. Although it is straightforward to apply the lubrication analysis to the 
resistance problem (Cox 1974), it should be noted that the mobility problem with the 
rate-of-strain ambient field requires the additional information on values for 
touching and almost-touching spheres. Batchelor & Green (1972~)  used the values in 
Wakiya (1971) and Lin et al. (1970) for these purposes. As mentioned earlier, the 
solution of Lin et al. (1970) was not accurate enough at small separations and the 
information on the stresslets at small separations was unavailable, so that the 
calculation of the bulk stress in Batchelor & Green (19723) contains &lo% 
uncertainty. Chen & Acrivos (1978) have used the multipole expansion technique to 
calculate mobility functions associated with the stresslet. Jeffrey & Onishi (1984) 
have used the method of twin multipole expansions and the lubrication analysis to 
obtain the expressions for resistance and mobility functions when the ambient 
velocity field is a superposition of a uniform stream and a vorticity field (no rate-of- 
strain field). For widely separated spheres they represented the mobility functions in 
the term of the polynomial of R+’, where R is the dimensionless centre-to-centre 
distance between two spheres. They tested the convergence of the series at small 
separations and found that for certain mobility functions, the series solution did not 
coincide with the near-field asymptotic values even when summed to terms to 
O(R-220). Recently, Kim & Mifflin (1985) have computed the entire set of functions 
using the boundary collocation methods of Ganatos, Pfeffer & Weinbaum (1978). 
They solved the resistance problems first and then used the relations between the 
resistance and mobility matrices to calculate the mobility functions. However, 
certain resistance functions are singular in the near field, the resistance matrix 
becomes ill-conditioned, and thus their method was successful only for dimensionless 
separations greater than 0.01. (The region between touching and 0.01 makes 
significant contributions to the bulk stress.) 

In summary there are two major disadvantages in the previous methods of solving 
the mobility problem. Firstly, three separate solution methods are required for 
touching, near-field and far-field problems, respectively. In addition, the usual 
lubrication-type analysis for near- field problems is somewhat cumbersome and the 
information on the stresslets with this method is still unavailable. Secondly, the 
singular behaviour of the resistance functions at small separations makes 
the mobility problems ill-conditioned. Therefore, even with the accurate values of the 
resistance functions at small separations, the inversion process to the mobility 
functions becomes unstable. 

Our purpose here is to introduce a simple, direct method which provides accurate 
information on the mobility functions of two equal-sized spheres at  all separations 
including the case of touching. As shown in subsequent sections, the boundary 
collocation method as used by Kim & Mifflin (1985) can be modified to bypass the 
singularity problem and the inversion process. We have tested the method at small 
separations and, when possible, have compared the results with accurate ,asymptotic 
expressions from previous works. For illustrative purposes, we calculate here the 
mobility functions of two neutrally buoyant spheres. Details are shown for very 
small separations and the near- field asymptotic expressions analogous to those 
obtained from lubrication theory are presented. With this information we determine 
a more accurate value of Batchelor & Green’s (19723) O(c2) coefficient in the 
expression for the bulk stress in suspension. 
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2. Mobility functions 
Two equal-sized spheres of radii a centred at x,(a = 1,2) are immersed in an 

unbounded Newtonian fluid of viscosity p. The Reynolds number of the flow is very 
small so that we may neglect the effect of inertial forces. The ambient flow field 
vm = Urn + 0'" x x + E*x is a superposition of a uniform stream, a vorticity and a rate- 
of-strain field. The boundary conditions on the surface are the rigid-body motion 
U(o)+B(,) x ( x - x , ) .  No external force or torque acts on the spheres, and following 
Batchelor & Green (1972u), we define the mobility functions which appear in the 
expressions of the translational and rotational velocities and the stresslet as 

(2.1u) 

(2.lb) 

(2.2) 

Uil) = v ~ ( x ,  ) + {$4 d,  dj +@(& - d ,  dj )} Tk E j k ,  

Qil) = Qj2) = Q? + C 1 5 , 5 ~ d , d ~ E ~ ~ ,  

ui2) = $'(X2 ) - {$4 d,  d5 +$B(&, - d,  d5 )} r k  E j k ,  

8:;) = 8:;' = ydp{ (1 + K )  Ei5  + L(d6 d ,  Sj, + d5 d k  dl sij ) E k ,  

+ M ( d i  d5-5si5)  dk  d l  E k l } ,  ( 2 . 3 ~ )  

=? 7ta3p{E,j + P(d6 dj-4 865 ) ( d k  dl - : sk i  ) E k ,  

+ @ ( d 6  dk + d5 dk + d,  d l  + d j  d l  -4dt d5 dk Ekl 

+ g ( s i k s 5 1  + 8 5 k 8 , 1 - s ~ j s k l + d ~ d j s k l + s i j d k d l  

-d i  dk-d5 861 d k - d i  'jk d l - d j  ' ik  d l + d t  d j  ' k  ' 1  E k l } ,  (2.3b) 

where r = x 2 - x ,  is the centre-to-centre vector and d = r/lrl. In  addition to the 
contributions from the ambient field (the single-sphere solution), hydrodynamic 
interaction effects are described in terms of six mobility functions which are 
functions only of the dimensionless centre-to-centre distance R = lrl/u. We define the 
dimensionless separation 6 as 6 = R-2 for later use. The axisymmetry about the 
centre-to-centre axis facilitates the decomposition of the translational velocity into 
the radial (A function) and circumferential (B function) components. Also, due to the 
axisymmetry, only three rate-of-strain fields out of five are independent, so that 
three functions are sufficient to express the stresslet. The first decomposition of the 
stresslet, (2.3a) is due to Batchelor & Green (1972~)  and the second (2.3b), is as in 
Chen & Acrivos (1978) and Kim & Mifflin (1985). Simple relations exist between the 
two sets, i.e. 

P=K+tL+Z&, Q = K + L ,  (2.4) 

so that we can recover one set from the other. We discuss the advantages and 
disadvantages of each decomposition in the subsequent section. The function J is also 
defined for later use: 

J = K + i L + & M  =$(P+2&+2K). (2.5) 

3. Boundary collocation 

equation of continuity for incompressible flow, 
The disturbance velocity field v (x )  - vm(x)  satisfies the Stokes equation and the 

-Vp+pV% = 0, v - v  = 0. (3.1) 
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x 

FIQURE 1. Two-sphere geometry with the position of collocation points. 

The solution can be represented using Lamb's general solution, as in Happel & 
Brenner (1983) : 

((1) 

v(x)-P(x) = c X V@?A-,+Vx (rux?A-l)+ rap-n-i pn(2n- 1) a-1 n-1 

Here p-n-l, @-n-l and are exterior spherical harmonics and r, = x-xu is the 
position vector in terms of the spherical coordinates (ra,9,,$) for u = 1, 2 as shown 
in figure 1. The spherical harmonics are expanded as 

n 

m-o 
p!$-, = X rind' Pr(cosO,)(ug 8om+agk sinm$), ( 3 . 3 4  

n 

= X randl P ~ ( c o s O , ) ( b ~ ~  &,,+bg!, sinm$), (3.3b) 
m-0 

n 

m-0 
x?ATl = C rpndl Pr(cos 8,) cg; cosm$, (3.3c) 

where Pz is the associated Legendre function and ag;, bg; and cgk are unknown 
coefficients to be determined. The force, torque and stresslet exerted on sphere a 
are 

F(") = -4nV(r:p-,), T(") = - 8 n p V ( r : ~ - ~ ) ,  S'") = -$nVV(r%p-,). (3.40, b, c) 

Substituting (3.3) into (3.4) gives the simple expressions for force, torque and 
stresslet in terms of a single coefficient in spherical harmonics. 

For each mobility function, we need only one particular value of m (0, 1 or 2) 
depending on the rate-of-strain field used as the applied ambient field. Figure 2 shows 
these three subproblems and the resulting non-zero components of the translational 
and rotational velocities and stresslet related to the mobility functions defined in the 
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m = O  m = l  m = 2  

0 0 0  

0 0 - 1  0 1 0  
E = ( O  0 1 )  

0 1 0  

0 0 0  
E = ( l  0 0 )  

SaI K 

FIGURE 2. Three subproblems with the applied rate-of-strain fields and the resulting mobility 
functions of two neutrally buoyant spheres. 

previous section. The decomposition of the stresslet by Kim & Mifflin (1985) in (2.3b) 
is a more natural and simpler choice than that of Batchelor & Green (1972 a) because 
only one mobility function is associated with each subproblem. 

The disturbance velocity field evaluated at the sphere surface must satisfy the no- 
slip boundary conditions so that it equals U(a)+O(a) x (xs-xa)-  v"(x,), where x, 
denotes the point on the surface (collocation point). As shown in Kim & Mifflin 
(1985), this fundamental collocation equation can be simplified further. Firstly, the 
&dependence can be factored so that the original two-dimensional collocation in 8 
and @ reduces to the one-dimensional collocation in 8. Secondly, the fore-aft mirror 
symmetry with respect to the (X, Y)-plane (figure 1) implies that the coefficients in 
spherical harmonics for sphere 1 are either equal or negative to the corresponding 
coefficients for sphere 2 depending on the type of ambient field. Thus, by truncating 
the spherical harmonics at N terms, the 3N unknown coefficients that result from 
equations at N collocation points (on the surface of sphere 1) are determined by 
solving the 3N x 3N linear system of equations. 

Kim & Mifflin (1985) first solve the resistance problem, where the information on 
the right-hand side of the collocation equation (the rigid-body motion and ambient 
field) is completely specified and the coefficients (the resistance functions) are 
determined. The mobility functions are then obtained by inversion of the linear 
relations between the resistance and mobility functions. However, the collocation 
equation may be modified to yield the mobility functions directly. Giving values for 
the forces and torques is equivalent to prescribing values for a,, and cml. The 
resulting translational and rotational motions are the new unknowns. This is 
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accomplished in the collocation equations by switching the column vectors that 
multiply a,, and cml with the right-hand-side vectors that multiply the translational 
and rotational velocities. For the problem in $2, there are no external forces or 
torques, so the right-hand side of the modified collocation equation contains only the 
column for the ambient rate-of-strain field. It should be noted that whereas the 
original system of equations becomes singular and/or ill-conditioned at  touching, the 
modified system contains (removable) poles and is well-conditioned. 

The computations presented here were obtained with equidistant collocation with 
points at  8, = ( k / ( N - 1 ) ) x  for k = 0, 1, 2, ..., N-1. (See figure 1.) 

4. Results and discussions 
According to the near-field asymptotic analyses, the mobility functions have two 

different types of near-field asymptotic behaviour, i.e. O(f) and O ( l / h f - l ) .  The 
mobility functions of the latter type cause a more serious convergence problem at 
small separations, and in testing our method, we shall pay special attention to such 
mobility functions. Unfortunately, the exact asymptotic expressions of this type are 
not available for the mobility functions defined in $2. However, similar behaviour is 
exhibited by the mobility function which relates the circumferential component of 
the translational velocity of sphere 1 to the force imposed on sphere 1. (The function 
is denoted by g& in Jeffrey & Onishi 1984). Figure 3 is a plot of yy, as a function of 
the number of collocation points (N = 72,124,198,398). The broken line is the near- 
field asymptotic expression of Jeffrey & Onishi (1984) and the unfilled circle is the 
exact value for touching spheres (the broken line approaches this value log- 
arithmically). The following general points are illustrated by this figure. 

(i) The collocation solution produces accurate values for touching spheres. In fact, 
such values can be obtained with even fewer collocation points (e.g. N = 12 for this 
particular problem). 

(ii) At  a fixed value of N, the collocation solution furnishes accurate values for f 
sufficiently large, as well as the exact value at  touching. However, there is a 
neighbourhood near 6 = 0 where the collocation solution deviates from the 
asymptotic solution. This occurs because the collocation equations yield solutions 
that are analytic in f and since it is impossible to represent the transcendental 
behaviour of O(l/lnf-') at  small 6 as a finite sum in terms of the type E-". 
Consequently, on a logarithmic scale, the deviation manifests itself as premature 
jump to the 'plateau' at the value for touching and indeed, this premature jump may 
be exploited to determine the value for touching spheres. 

(iii) The envelope for the family of curves obtained by increasing N is the near-field 
asymptotic solution. 

For y& our method reproduces the asymptotic results to within 0.1 70 difference 
down to the separation f = lop5. Our results also show that the asymptotic 
expression is valid for f < As one final comparison, we note that Jeffrey & 
Onishi (1984) have also calculated this function for small separations using the 
method of twin multipole expansions. Sums including terms to 0(R-220) were 
required to obtain reasonably accurate values for 6 2 Here, we need 52 
collocation points to achieve four-digit accuracy. 

We now present the near-field results for the mobility functions of $2, In figure 4 
we show plots of A, B, C, P, Q and K as functions of f  for 0 < f < 0.01. These plots 
are generated using 72 collocation points and the encircled points at 6 = 0 correspond 
to the computed values a t  f = lo-'. Here again, these values are in agreement with 
prior works for touching spheres (to four-digit accuracy). The graphs show that the 
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functions A, P and K have finite slope at 6 = 0, whereas the functions B, C and Q 
have infinite slope at 6 = 0. It is interesting to note that only the mobility functions 
in the subproblem form = 1 have the singular behaviour at 6 = 0. Batchelor & Green 
(1972~) have shown the O(6) behaviour of P (or K+!L+ZM) function for small 6 
using the lubrication analysis and presumed similar behaviour for K ,  L and M 
functions. This error is due to the lack of accurate information on K, L and M 
functions at small separations. In fact, the singular behaviour of L and M functions 
cancel each other exactly at small separations. The leading-order terms in L and 
M are O(l/ln[-l) and the coefficient for M is (-2) times that for L. To elucidate 
O(l/lnf') behaviour at small separations we plot B, C, Q and J as functions of 
l/ln (-'for 10-s < 6 < lo-' in figure 5. We increase the number of collocation points 
up to 398 where the convergence is obtained for 5 2 

We have determined the near-field asymptotic expressions following the functional 
forms suggested by the lubrication analysis for future applications. Similar 
expressions valid for different ranges of 6-values are available in Batchelor & Green 
(1972a), Arp & Mason (1977) and Chen & Acrivos (1978). The following expressions 
for A, P and K are obtained using the least-squares-curve fit with points at  6 = 0 and 

< 6 < and B, C, Q and J with the points at 6 = 0 and < 6 < 
A = 1.000-4.148~+3.2906~, (4.1 a )  

P = 0.9105-4.3356+3.714@, (4.1 b)  

K = -0.04722+0.08117~+0.1273@, ( 4 . 1 ~ )  

0.9121 0.7804 
B = 0.4060-- +- 

In 6-l (In 6-l )z ' 

1.238 1.135 
C = 0.5940 - - +- 

In 6- ' (In 5-l) ' 
0.7250 0.6956 
In 6-l (In 6-l )2 ' 

0.2630 + 0.02828 
1nE-l 

Q = 0.1454--+- 

J = 0.2214------- 

(4.1d) 

(4.1 e) 

It should be noted that slightly different values of the coefficient may be obtained if 
we use a different set of points. We observe that by excluding the points from 
6 = loT2 to 5 = 0 in the least-squares-curve fit, the coefficient of in A approaches 
the value in Batchelor & Green (1972~).  Also, A and P functions behave similarly 
at small separations so that the coefficients of 5 in both expressions are the same a t  
small separations. 

As one application we have determined a more accurate estimate of the coefficient 
of the O(c2) term in the expression for the bulk stress (Batchelor & Green 1972b). A t  
the time of their work, information on J was limited to the far-field region and the 
value a t  touching. For the near-field region they drew a smooth curve with an 
assumption of O(6) behaviour. The triangles in figure 5 correspond to the values of 
J used in their bulk-stress calculation. They divided the range of integration into 
three parts, 0 < 6 < 0.0025, 0.0025 < 6 < 1 and 6 2 I. As shown in figure 5, the 
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FIGURE 5. Graphs of the mobility functions B, C, Q and J. The numbers of collocation points are 
72, 124, 198 and 398. The broken lines are near-field asymptotic forms by the least-squares-curve 
fit with polynomials in l/lnP'. The triangles correspond to the values of the J function used in 
Batchelor & Green (1972b) for their bulk-stress calculation. 

interpolation of J function in the regions 0 < f < 0.0025 and 0.0025 < f < 1 was the 
source of uncertainty in their h a 1  numerical result. We have also checked the values 
of the probability-density-distribution function and found that their near-field 
asymptotic expression was sufficiently accurate for the bulk-stress calculation. For 
the part of the range 0 < f 6 0.0025 we obtain 0.113 instead of their 0.132, and for 
0.0025 < f < 1 we obtain 0.387 instead of 0.449 (0.384 in Kim & Mifflin 1985). Thus 
the coefficient of the O(c2) term is 6.95 instead of 7.6. 

This material is based on work supported by the National Science Foundation 
under grant CBT-8451056 with matching funds from the AMOCO Foundation, 
Dowzorning and the Kimberly-Clark Corporation. 
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